Publications by authors named "H T C Stoof"

The anomalous strange metal phase found in high-T cuprates does not follow the conventional condensed-matter principles enshrined in the Fermi liquid and presents a great challenge for theory. Highly precise experimental determination of the electronic self-energy can provide a test bed for theoretical models of strange metals, and angle-resolved photoemission can provide this as a function of frequency, momentum, temperature and doping. Here we show that constant energy cuts through the nodal spectral function in (Pb,Bi)SrLaCuO have a non-Lorentzian lineshape, consistent with a self-energy that is k dependent.

View Article and Find Full Text PDF
Article Synopsis
  • Colloidal nanocrystals have advanced in size and surface properties, leading to potential applications in optoelectronics and quantum materials.
  • The study focuses on two-dimensional BiSe crystals with controlled thickness, exploring the transition of a topological insulator as it shifts from three to two dimensions.
  • Results reveal an 8 nm wide edge state around specific BiSe structures and discuss its characteristics using advanced theoretical models, also suggesting the possible state density for future devices.
View Article and Find Full Text PDF

We analyze the topology, dispersion, and optical selection rules of bulk Wannier excitons in nanosheets of BiSe, a topological insulator in the family of the bismuth chalcogenides. Our main finding is that excitons also inherit the topology of the electronic bands, quantified by the skyrmion winding numbers of the constituent electron and hole pseudospins as a function of the total exciton momentum. The excitonic bands are found to be strongly indirect due to the band inversion of the underlying single-particle model.

View Article and Find Full Text PDF

We studied the initial nature and relaxation of photoexcited electronic states in CdSe nanoplatelets (NPLs). Ultrafast transient optical absorption (TA) measurements were combined with the theoretical analysis of the formation and decay of excitons, biexcitons, free charge carriers, and trions. In the latter, photons and excitons were treated as bosons and free charge carriers as fermions.

View Article and Find Full Text PDF

Network structure has often proven to be important in understanding the decision behavior of individuals or agents in different interdependent situations. Computational studies predict that network structure has a crucial influence on behavior in iterated 2 by 2 asymmetric 'battle of the sexes' games. We test such behavioral predictions in an experiment with 240 human subjects.

View Article and Find Full Text PDF