Publications by authors named "H Strzelecka-Golaszewska"

Background: The interaction of N-terminal extension of the myosin A1 essential light chain (A1 ELC) with actin is receiving increasing attention as a target in utilizing synthetic A1 ELC N-terminal-derived peptides in cardiac dysfunction therapy.

Methods: To elucidate the mechanism by which these peptides regulate actin-myosin interaction, here we have investigated their effects on the myosin subfragment 1 (S1)-induced polymerization of G-actin.

Results: The MLCF and MLCS peptides spanning the 3-12 of A1 ELC sequences from fast and slow skeletal muscle, respectively, increased the rate of actin polymerization not only by S1(A2) but also the rate of S1(A1)-induced actin polymerization, suggesting that they did not interfere with the direct binding of A1 ELC with actin.

View Article and Find Full Text PDF

Formation of stable actin filaments, critically important for actin functions, is determined by the ionic strength of the solution. However, not much is known about the elements of the actin fold involved in ionic-strength-dependent filament stabilization. In this work, F-actin was destabilized by Cu binding to Cys374, and the effects of solvent conditions on the dynamic properties of F-actin were correlated with the involvement of Segment 227-235 in filament stabilization.

View Article and Find Full Text PDF

The mechanism of salt-induced actin polymerization involves the energetically unfavorable nucleation step, followed by filament elongation by the addition of monomers. The use of a bifunctional cross-linker, N,N'-(1,4-phenylene)dimaleimide, revealed rapid formation of the so-called lower dimers (LD) in which actin monomers are arranged in an antiparallel fashion. The filament elongation phase is characterized by a gradual LD decay and an increase in the yield of "upper dimers" (UD) characteristic of F-actin.

View Article and Find Full Text PDF

Monomeric actin (G-actin) polymerizes spontaneously into helical filaments in the presence of inorganic salts. The slowest, rate-limiting step of the polymerization process is formation of actin trimers, the smallest oligomers that serve as nuclei for fast filament growth (filament elongation) by monomer addition at the filament ends. In low ionic-strength solutions, actin can be polymerized by myosin subfragment-1 (S1).

View Article and Find Full Text PDF

Proteolytic cleavage of actin between Gly(42) and Val(43) within its DNase-I-binding loop (D-loop) abolishes the ability of Ca-G-actin to spontaneously polymerize in the presence of KCl. Here we show that such modified actin is assembled into filaments, albeit at a lower rate than unmodified actin, by myosin subfragment 1 (S1) carrying the A1 essential light chain but not by S1(A2). S1 titration of pyrene-G-actin showed a diminished affinity of cleaved actin for S1, but this could be compensated for by using S1 in excess.

View Article and Find Full Text PDF