The ability to characterize periodic nanostructures in the laboratory gains more attention as nanotechnology is widely utilized in a variety of application fields. Scanning-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is a promising candidate to allow non-destructive, element-sensitive characterization of sample structures down to the nanometer range for process engineering. Adopting a complementary metal-oxide semiconductor (CMOS) detector to work energy-dispersively single-photon detection, the whole range of emission angles of interest can be recorded at once.
View Article and Find Full Text PDFWe present a laser-driven, bright, and broadband (50 to 1500 eV) soft-x-ray plasma source with <10 ps pulse duration. This source is employed in two complementary, laboratory-scale beamlines for time-resolved, magnetic resonant scattering and spectroscopy, as well as near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. In both beamlines, dedicated reflection zone plates (RZPs) are used as single optical elements to capture, disperse, and focus the soft x rays, reaching resolving powers up to E/ΔE > 1000, with hybrid RZPs at the NEXAFS beamline retaining a consistent E/ΔE > 500 throughout the full spectral range, allowing for time-efficient data acquisition.
View Article and Find Full Text PDFHereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by vascular malformations, which cause frequent bleeding events including epistaxis and gastrointestinal bleeding. We describe the management of an 84-year-old woman with HHT who received end-of-life care on a palliative care ward. When the patient was unable to swallow her tranexamic acid tablets, this was converted to a continuous subcutaneous infusion, which was continued for a week until death.
View Article and Find Full Text PDFScan-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is an established technique for the investigation of the elemental depth-profiles of various samples. Recently it has been applied to investigating structured nanosamples in the tender X-ray range. However, lighter elements such as oxygen, nitrogen or carbon cannot be efficiently investigated in this energy range, because of the ineffective excitation.
View Article and Find Full Text PDFHolography is a powerful method for achieving 3D images of objects. Extending this method to short wavelengths potentially offers significantly higher resolution than visible light holography. However, current X-ray holography setups employ nanoscale pinholes to form the reference wave.
View Article and Find Full Text PDF