Publications by authors named "H Sizemore"

A main goal of human space exploration is to develop humanity into a multi-planet species where civilization extends beyond planet Earth. Establishing a self-sustaining human presence on Mars is key to achieving this goal. resource utilization (ISRU) on Mars is a critical component to enabling humans on Mars to both establish long-term outposts and become self-reliant.

View Article and Find Full Text PDF

Posttranscriptional tRNA modifications are essential for proper gene expression, and defects in the enzymes that perform tRNA modifications are associated with numerous human disorders. Throughout eukaryotes, 2'--methylation of residues 32 and 34 of the anticodon loop of tRNA is important for proper translation, and in humans, a lack of these modifications results in non-syndromic X-linked intellectual disability. In yeast, the methyltransferase Trm7 forms a complex with Trm732 to 2'--methylate tRNA residue 32 and with Trm734 to 2'--methylate tRNA residue 34.

View Article and Find Full Text PDF

Hydrothermal processes in impact environments on water-rich bodies such as Mars and Earth are relevant to the origins of life. Dawn mapping of dwarf planet (1) Ceres has identified similar deposits within Occator crater. Here we show using Dawn high-resolution stereo imaging and topography that Ceres' unique composition has resulted in widespread mantling by solidified water- and salt-rich mud-like impact melts with scattered endogenic pits, troughs, and bright mounds indicative of outgassing of volatiles and periglacial-style activity during solidification.

View Article and Find Full Text PDF

Before acquiring highest-resolution data of Ceres, questions remained about the emplacement mechanism and source of Occator crater's bright faculae. Here we report that brine effusion emplaced the faculae in a brine-limited, impact-induced hydrothermal system. Impact-derived fracturing enabled brines to reach the surface.

View Article and Find Full Text PDF

Landslides are among the most widespread geologic features on Ceres. Using data from Dawn's Framing Camera, landslides were previously classified based upon geomorphologic characteristics into one of three archetypal categories, Type 1(T1), Type 2 (T2), and Type 3 (T3). Due to their geologic context, variation in age, and physical characteristics, most landslides on Ceres are, however, intermediate in their morphology and physical properties between the archetypes of each landslide class.

View Article and Find Full Text PDF