Publications by authors named "H Seeberger"

Atypical hemolytic uremic syndrome (aHUS) is characterized by complement attack against host cells due to mutations in complement proteins or autoantibodies against complement factor H (CFH). It is unknown why nearly all patients with autoimmune aHUS lack CFHR1 (CFH-related protein-1). These patients have autoantibodies against CFH domains 19 and 20 (CFH19-20), which are nearly identical to CFHR1 domains 4 and 5 (CFHR14-5).

View Article and Find Full Text PDF

The autoimmune form of atypical hemolytic uremic syndrome (HUS) is characterized by circulating autoantibodies against the complement regulator factor H, and is often associated with deficiency of the factor H-related proteins CFHR1 and CFHR3. Here we studied whether anti-factor H autoantibodies crossreact with CFHR1, and determined functional consequences of this. In ELISA, anti-factor H immunoglobulin G (IgG) autoantibodies from 24 atypical HUS patients bound to the short consensus repeat 20 domain of factor H, 21 antibodies also recognized CFHR1, but none CFHR3.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic human pathogen that can cause a wide range of clinical symptoms and infections that are frequent in immunocompromised patients. In this study, we show that P. aeruginosa evades human complement attack by binding the human plasma regulators Factor H and Factor H-related protein-1 (FHR-1) to its surface.

View Article and Find Full Text PDF

Complement factor H-related (FHR) proteins display structural and functional similarities to each other and to the complement regulator factor H (FH). FHRs have been identified in various species, including human, rat, and the fish barred sand bass. As mice provide a useful model system to study the physiological role of FHRs in vivo, we aimed at characterizing murine FHR proteins.

View Article and Find Full Text PDF

Factor H (FH), the major fluid phase regulator of the alternative complement pathway, mediates protection of plasma-exposed host structures. It has recently been shown that short consensus repeats 19 to 20 of FH are mutational hot spots associated with atypical hemolytic uremic syndrome (aHUS), a disease with endothelial cell damage. Domain 20 of FH contains binding sites for heparin, C3b, and the cleavage product C3d.

View Article and Find Full Text PDF