Adv Colloid Interface Sci
June 2017
A comprehensive review of the recently published work on asphaltene destabilization and flocculation kinetics is presented. Four different experimental techniques were used to study asphaltenes undergoing flocculation process in crude oils and model oils. The asphaltenes were destabilized by different n-alkanes and a geometric population balance with the Smoluchowski collision kernel was used to model the asphaltene aggregation process.
View Article and Find Full Text PDFSmall-angle X-ray and neutron scattering (SAXS/SANS) by asphaltenes in various solvents (toluene, tetrahydrofuran, and 1-methylnaphthalene) at dilute concentrations of asphaltenes are presented and discussed. As asphaltenes are diluted, it was found that the cluster size decreases and follows a fractal scaling law. This observation reveals that asphaltene clusters persist to dilute concentrations and maintain fractal characteristics, regardless of concentration.
View Article and Find Full Text PDFThis paper discusses time-resolved small-angle neutron scattering results that were used to investigate asphaltene structure and stability with and without a precipitant added in both crude oil and model oil. A novel approach was used to isolate the scattering from asphaltenes that are insoluble and in the process of aggregating from those that are soluble. It was found that both soluble and insoluble asphaltenes form fractal clusters in crude oil and the fractal dimension of the insoluble asphaltene clusters is higher than that of the soluble clusters.
View Article and Find Full Text PDFThis study is the first to show that silica precipitation under very acidic conditions ([HCl] = 2-8 M) proceeds through two distinct steps. First, the monomeric form of silica is quickly depleted from solution as it polymerizes to form primary particles approximately 5 nm in diameter. Second, the primary particles formed then flocculate.
View Article and Find Full Text PDFScientific knowledge of how zeolites, a unique classification of microporous aluminosilicates, undergo dissolution in aqueous hydrochloric acid solutions is limited. Understanding the dissolution of zeolites is fundamental to a number of processes occurring in nature and throughout industry. To better understand the dissolution process, experiments were carried out establishing that the Si-to-Al ratio controls zeolite framework dissolution, by which the selective removal of aluminum constrains the removal of silicon.
View Article and Find Full Text PDF