Publications by authors named "H Schwalbe"

Ephrin receptors regulate intercellular communication and are thus involved in tumor development. Ephrin receptor A2 (EphA2), in particular, is overexpressed in a variety of cancers and is a proven target for anti-cancer drugs. The N-terminal ligand-binding domain of ephrin receptors is responsible for the recognition of their ligands, ephrins, and is directly involved in receptor activation.

View Article and Find Full Text PDF

The SARS-CoV-2 nucleocapsid protein is indispensable for viral RNA genome processing. Although the N-terminal domain (NTD) is suggested to mediate specific RNA-interactions, high-resolution structures with viral RNA are still lacking. Available hybrid structures of the NTD with ssRNA and dsRNA provide valuable insights; however, the precise mechanism of complex formation remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolism significantly influences cancer progression, with a focus on glucose as a key energy source, while the role of other natural sugars is less understood.
  • This study used advanced 2D NMR spectroscopy to analyze the metabolism of C-labelled sugars (glucose, fructose, galactose, mannose, and xylose), revealing that mannose mimics glucose’s metabolic profile, and galactose plays a crucial role in one-carbon metabolism alongside fructose.
  • The findings indicate that cancer cells utilizing fructose or galactose show reduced sensitivity to certain inhibitors, suggesting these sugars are essential in understanding metabolism in cancer treatments.
View Article and Find Full Text PDF

Throughout the family of coronaviruses, structured RNA elements within the 5' region of the genome are highly conserved. The fifth stem-loop element from SARS-CoV-2 (5_SL5) represents an example of an RNA structural element, repeatedly occurring in coronaviruses. It contains a conserved, repetitive fold within its substructures SL5a and SL5b.

View Article and Find Full Text PDF

Instruct-ERIC, "the European Research Infrastructure Consortium for Structural biology research," is a pan-European distributed research infrastructure making high-end technologies and methods in structural biology available to users. Here, we describe the current state-of-the-art of integrated structural biology and discuss potential future scientific developments as an impulse for the scientific community, many of which are located in Europe and are associated with Instruct. We reflect on where to focus scientific and technological initiatives within the distributed Instruct research infrastructure.

View Article and Find Full Text PDF