Introduction: The chicken egg, with its compartments, is a widely used and popular animal model in experimental studies. This study aimed to quantify the volumes of the yolk/yolk sac, amniotic fluid, and chicken embryo using non-invasive ultra-high-field magnetic resonance imaging (UHF-MRI).
Materials And Methods: In total, 64 chicken eggs were examined using a 7 T UHF-MRI scanner, acquiring T2-weighted anatomical images of the entire egg from developmental day 1 to 16 (D1-D16).
Rationale And Objectives: The prognostic role of computed tomography (CT)-defined skeletal muscle features in COVID-19 is still under investigation. The aim of the present study was to evaluate the prognostic role of CT-defined skeletal muscle area and density in patients with COVID-19 in a multicenter setting.
Materials And Methods: This retrospective study is a part of the German multicenter project RACOON (Radiological Cooperative Network of the COVID-19 pandemic).
Purpose: This study evaluates the prognostic significance of pleural effusion (PE) in COVID-19 patients across thirteen centers in Germany, aiming to clarify its role in predicting clinical outcomes.
Methods: In this retrospective analysis within the RACOON project (Radiological Cooperative Network of the COVID-19 pandemic), 1183 patients (29.3 % women, 70.
Objectives: Introducing SPINEPS, a deep learning method for semantic and instance segmentation of 14 spinal structures (ten vertebra substructures, intervertebral discs, spinal cord, spinal canal, and sacrum) in whole-body sagittal T2-weighted turbo spin echo images.
Material And Methods: This local ethics committee-approved study utilized a public dataset (train/test 179/39 subjects, 137 female), a German National Cohort (NAKO) subset (train/test 1412/65 subjects, mean age 53, 694 female), and an in-house dataset (test 10 subjects, mean age 70, 5 female). SPINEPS is a semantic segmentation model, followed by a sliding window approach utilizing a second model to create instance masks from the semantic ones.