Publications by authors named "H Schirrmeister"

In nuclear medicine, bone scanning is based on the principle of scintigraphy using bone-seeking radiopharmaceuticals which accumulate in sites of increased bone formation. From a historical point of view, (18)F-fluoride was one of the first osteotropic tracers which was replaced by (99m)Tc-labelled polyphosphonates. With the development of modern PET equipment the superior diagnostic performance of (18)F-fluoride PET for the detection and characterization of osseous lesions was proven in comparison to conventional bone scanning.

View Article and Find Full Text PDF

Purpose: The aim of this study was to determine the predictive values of 2-[fluorine-18]fluoro-2-deoxy-D-glucose-positron emission tomography (FDG-PET) in primary staging in patients with newly diagnosed non-seminomatous germ cell tumour (NSGCT) clinical stage I/II.

Patients And Methods: The hypothesis was that FDG-PET would improve the negative predictive value (NPV) from 70% to 90%, thus requiring a total of 169 patients. All scans underwent visual analysis by a reference team of nuclear medicine physicians.

View Article and Find Full Text PDF

Positron emission tomography (PET) is able to demonstrate changes in the metabolism of malignant tumors and metastases before they become visible on anatomical imaging. The skeleton is the most common site of distant metastases of breast cancer. There is convincing evidence that FDG-PET is more sensitive in detecting osteolytic metastases than bone scintigraphy, whereas bone scintigraphy is more sensitive in detecting osteoblastic metastases.

View Article and Find Full Text PDF

We have determined the ability of positron emission tomography (PET) with the thymidine analogue 3'-deoxy-3'-[(18)F]fluorothymidine (FLT) to detect manifestation sites of malignant lymphoma, to assess proliferative activity, and to differentiate aggressive from indolent tumors. In this prospective study, FLT-PET was done additionally to routine staging procedures in 34 patients with malignant lymphoma. Sixty minutes after i.

View Article and Find Full Text PDF

Positron emission tomography (PET) is able to demonstrate changes in the metabolism of malignant tumors and metastases before they become visible on anatomical imaging. The skeleton is the most common site of distant metastases of breast cancer. There is convincing evidence that FDG-PET is more sensitive in detecting osteolytic metastases than bone scintigraphy, whereas bone scintigraphy is more sensitive in detecting osteoblastic metastases.

View Article and Find Full Text PDF