Purpose: Fractures pose a significant global health challenge, with varying incidence trends and causes across demographics and regions. This study aims to analyze global patterns in the incidence and primary causes of femoral shaft fractures.
Methods: Data from the Global Burden of Disease database were analyzed for femoral fractures (excluding femoral neck fractures) by age, gender, and socio-demographic index regions.
Objective: This study aimed to investigate how dynamic contrast-enhanced CT imaging signs correlate with the differentiation grade and microvascular invasion (MVI) of hepatocellular carcinoma (HCC), and to assess their predictive value for MVI when combined with clinical characteristics.
Methods: We conducted a retrospective analysis of clinical data from 232 patients diagnosed with HCC at our hospital between 2021 and 2022. All patients underwent preoperative enhanced CT scans, laboratory tests, and postoperative pathological examinations.
The catalytic degradation of malodorous sulfur-containing volatile organic compounds (S-VOCs), especially methanethiol (CHSH), faces an enormous challenge in striking a balance between activity and stability. Herein, we develop the time-tandem and spatial-extended strategy for synthesizing t-MoO/meso-SiO nano-reactor-type catalysts and reveal the migration and transformation behaviors of both carbon and sulfur species at the mesoscopic scale to break the catalytic CHSH activity and stability trade-off. The dynamic evolution of active centers from initial oxygen sites and acid sites to sulfur vacancies in MoS during the reaction process as well as the formation of a new dimethyl disulfide (CHSSCH) reaction pathway are identified as the main reason for the catalysts' superior activity and sulfur resistance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Colon cancer is one kind of malignant digestive tract tumor with high morbidity and mortality worldwide, treatments for which still face great challenges. Recently emerged intervention strategies such as phototherapy and gas therapy have displayed promising effects in the treatment of colon cancer, but their application are still hindered due to insufficient tumor targeting and deeper tissue penetrating capacity. Herein, in the present study, we developed one theranostic nanoplatform Cet-CDs-SNO (CCS) to realize multimodal imaging-guided synergistic colon cancer therapy.
View Article and Find Full Text PDF