Publications by authors named "H S Greenside"

Using numerical integrations of the Boussinesq equations in rotating cylindrical domains with realistic boundary conditions, we have computed the value of the largest Lyapunov exponent lambda1 for a variety of aspect ratios and driving strengths. We study in particular the domain chaos state, which bifurcates supercritically from the conducting fluid state and involves extended propagating fronts as well as point defects. We compare our results with those from Egolf, [Nature 404, 733 (2000)], who suggested that the value of lambda1 for the spiral defect chaos state of a convecting fluid was determined primarily by bursts of instability arising from short-lived, spatially localized dislocation nucleation events.

View Article and Find Full Text PDF

We demonstrate numerically that a brief burst consisting of two to six spikes can propagate in a stable manner through a one-dimensional homogeneous feedforward chain of nonbursting neurons with excitatory synaptic connections. Our results are obtained for two kinds of neuronal models: leaky integrate-and-fire neurons and Hodgkin-Huxley neurons with five conductances. Over a range of parameters such as the maximum synaptic conductance, both kinds of chains are found to have multiple attractors of propagating bursts, with each attractor being distinguished by the number of spikes and total duration of the propagating burst.

View Article and Find Full Text PDF

To understand how spatiotemporal chaos may modify material transport, we use direct numerical simulations of the three-dimensional Boussinesq equations and of an advection-diffusion equation to study the transport of a passive tracer by the spiral defect chaos state of a convecting fluid. The simulations show that the transport is diffusive and is enhanced by the spatiotemporal chaos. The enhancement in tracer diffusivity follows two regimes.

View Article and Find Full Text PDF

An efficient semi-implicit second-order-accurate finite-difference method is described for studying incompressible Rayleigh-Bénard convection in a box, with sidewalls that are periodic, thermally insulated, or thermally conducting. Operator-splitting and a projection method reduce the algorithm at each time step to the solution of four Helmholtz equations and one Poisson equation, and these are solved by fast direct methods. The method is numerically stable even though all field values are placed on a single nonstaggered mesh commensurate with the boundaries.

View Article and Find Full Text PDF

A recently developed space-time adaptive mesh refinement algorithm (AMRA) for simulating isotropic one- and two-dimensional excitable media is generalized to simulate three-dimensional anisotropic media. The accuracy and efficiency of the algorithm is investigated for anisotropic and inhomogeneous 2D and 3D domains using the Luo-Rudy 1 (LR1) and FitzHugh-Nagumo models. For a propagating wave in a 3D slab of tissue with LR1 membrane kinetics and rotational anisotropy comparable to that found in the human heart, factors of 50 and 30 are found, respectively, for the speedup and for the savings in memory compared to an algorithm using a uniform space-time mesh at the finest resolution of the AMRA method.

View Article and Find Full Text PDF