Renal development is a complex process in which two major processes, tubular branching and nephron development, regulate each other reciprocally. Our previous findings have indicated that collagen XVIII (ColXVIII), an extracellular matrix protein, affects the renal branching morphogenesis. We investigate here the role of ColXVIII in nephron formation and the behavior of nephron progenitor cells (NPCs) using isoform-specific ColXVIII knockout mice.
View Article and Find Full Text PDFInterdiscip Cardiovasc Thorac Surg
August 2023
Objectives: Several studies have reported mortality risk factors associated with hypoplastic left heart syndrome (HLHS). However, these data are ambiguous and mainly focused on the independent effects of these factors. We examined both the independent and the cumulative effects of preoperative risk factors for poor outcome in patients undergoing the Norwood procedure.
View Article and Find Full Text PDFThe tumor extracellular matrix (ECM) critically regulates cancer progression and treatment response. Expression of the basement membrane component collagen XVIII (ColXVIII) is induced in solid tumors, but its involvement in tumorigenesis has remained elusive. We show here that ColXVIII was markedly upregulated in human breast cancer (BC) and was closely associated with a poor prognosis in high-grade BCs.
View Article and Find Full Text PDFThis paper presents a comprehensive investigation of machine learning-based intrusion detection methods to reveal cyber attacks in railway axle counting networks. In contrast to the state-of-the-art works, our experimental results are validated with testbed-based real-world axle counting components. Furthermore, we aimed to detect targeted attacks on axle counting systems, which have higher impacts than conventional network attacks.
View Article and Find Full Text PDFCollagen XVIII (ColXVIII) is a component of the extracellular matrix implicated in embryogenesis and control of tissue homoeostasis. We now provide evidence that ColXVIII has a specific role in renal branching morphogenesis as observed in analyses of total and isoform-specific knockout embryos and mice. The expression of the short and the two longer isoforms differ temporally and spatially during renal development.
View Article and Find Full Text PDF