Nitric oxide (NO) is an essential molecule able to control and regulate many biological functions. Additionally, NO bears a potential toxicity or damaging effects under conditions of uncontrolled production, and because of its participation in redox-sensitive pathways and oxidizing reactions. Several plant (poly)phenols present in the diet are able to regulate the enzymes producing NO (NOSs).
View Article and Find Full Text PDFOxylipins play a critical role in regulating the onset and resolution phase of inflammation. Despite inflammation is a pathological hallmark in amyotrophic lateral sclerosis (ALS), the plasma oxylipin profile of ALS patients has not been assessed yet. Herein, we develop an oxylipin profile-targeted analysis of plasma from 74 ALS patients and controls.
View Article and Find Full Text PDFBackground: Resolution of inflammation is an active and regulated process that leads to the clearance of cell debris and immune cells from the challenged tissue, facilitating the recovery of homeostasis. This physiological response is coordinated by endogenous bioactive lipids known as specialized pro-resolving mediators (SPMs). When resolution fails, inflammation becomes uncontrolled leading chronic inflammation and tissue damage, as occurs in multiple sclerosis (MS).
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is characterized by excessive liver fat deposition in the absence of significant alcohol intake. Since extra virgin olive oil (EVOO) reduces fat accumulation, we analyzed the involvement of nitro-fatty acids (NO-FA) on the beneficial effects of EVOO consumption on NAFLD. Nitro-fatty acids formation was observed during digestion in mice supplemented with EVOO and nitrite.
View Article and Find Full Text PDFProstaglandins Other Lipid Mediat
February 2021
Arachidonic acid (AA) is a precursor of enzymatic and non-enzymatic oxidized products such as prostaglandins, thromboxanes, leukotrienes, lipoxins, and isoprostanes. These products may exert signaling or damaging roles during physiological and pathological conditions, some of them being markers of oxidative stress linked to inflammation. Recent data support the concept that cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 (CYP450) followed by cytosolic and microsomal dehydrogenases can convert AA to lipid-derived electrophiles (LDE).
View Article and Find Full Text PDF