Publications by authors named "H Rotstein"

Background: Influenza virus is responsible for a yearly epidemic in much of the world. To better predict short-term, seasonal variations in flu infection rates and possible mechanisms of yearly infection variation, we trained a Long Short-Term Memory (LSTM)-based deep neural network on historical Influenza-Like-Illness (ILI), climate, and population data.

Methods: Data were collected from the Centers for Disease Control and Prevention (CDC), the National Center for Environmental Information (NCEI), and the United States Census Bureau.

View Article and Find Full Text PDF

Hippocampal CA1 neurons generate single spikes and stereotyped bursts of spikes. However, it is unclear how individual neurons dynamically switch between these output modes and whether these two spiking outputs relay distinct information. We performed extracellular recordings in spatially navigating rats and cellular voltage imaging and optogenetics in awake mice.

View Article and Find Full Text PDF

The classical Hodgkin-Huxley (HH) point-neuron model of action potential generation is four-dimensional. It consists of four ordinary differential equations describing the dynamics of the membrane potential and three gating variables associated to a transient sodium and a delayed-rectifier potassium ionic currents. Conductance-based models of HH type are higher-dimensional extensions of the classical HH model.

View Article and Find Full Text PDF

In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena that cross a wide range of scales and often require consideration at varying degrees of abstraction, from precise biophysical interactions to the computations they implement.

View Article and Find Full Text PDF

Neurons in oscillatory networks often exhibit membrane potential resonance, a peak impedance at a non-zero input frequency. In electrically coupled oscillatory networks, the coupling coefficient (the ratio of post- and prejunctional voltage responses) could also show resonance. Such coupling resonance may emerge from the interaction between the coupling current and resonance properties of the coupled neurons, but this relationship has not been clearly described.

View Article and Find Full Text PDF