Publications by authors named "H Rotella"

The Rashba effect plays important roles in emerging quantum materials physics and potential spintronic applications, entailing both the spin orbit interaction (SOI) and broken inversion symmetry. In this work, we devise asymmetric oxide heterostructures of LaAlO//SrTiO/LaAlO (LAO//STO/LAO) to study the Rashba effect in STO with an initial centrosymmetric structure, and broken inversion symmetry is created by the inequivalent bottom and top interfaces due to their opposite polar discontinuities. Furthermore, we report the observation of a transition from the cubic Rashba effect to the coexistence of linear and cubic Rashba effects in the oxide heterostructures, which is controlled by the filling of Ti orbitals.

View Article and Find Full Text PDF

Transition metal oxides having a perovskite structure form a wide and technologically important class of compounds. In these systems, ferroelectric, ferromagnetic, ferroelastic, or even orbital and charge orderings can develop and eventually coexist. These orderings can be tuned by external electric, magnetic, or stress field, and the cross-couplings between them enable important multifunctional properties, such as piezoelectricity, magneto-electricity, or magneto-elasticity.

View Article and Find Full Text PDF

We study the transport properties in SrVO3/LaVO3 (SVO/LVO) superlattices deposited on SrTiO3 (STO) substrates. We show that the electronic conduction occurs in the metallic LVO layers with a galvanomagnetism typical of a 2D Fermi surface. In addition, a Kondo-like component appears in both the thermal variation of resistivity and the magnetoresistance.

View Article and Find Full Text PDF

A remarkable feature of vanadium dioxide is that it can be synthesized in a number of polymorphs. The conductivity mechanism in the metastable layered polymorph VO2(B) thin films has been investigated by terahertz time-domain spectroscopy (THz-TDS). In VO2(B), a critical temperature of 240 K marks the appearance of a non-zero Drude term in the observed complex conductivity, indicating the evolution from a pure insulating state towards a metallic state.

View Article and Find Full Text PDF

While structure refinement is routinely achieved for simple bulk materials, the accurate structural determination still poses challenges for thin films due on the one hand to the small amount of material deposited on the thicker substrate and, on the other hand, to the intricate epitaxial relationships that substantially complicate standard x-ray diffraction analysis. Using both electron and x-ray diffraction, we analyze the crystal structure of epitaxial LaVO3 thin films grown on (1 0 0)-oriented SrTiO3. Transmission electron microscopy study reveals that the thin films are epitaxially grown on SrTiO3 and points to the presence of 90° oriented domains.

View Article and Find Full Text PDF