Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta's Philae lander was designed for in situ analysis of organic molecules on comet 67P/Churyumov-Gerasimenko. Twenty-five minutes after Philae's initial comet touchdown, the COSAC mass spectrometer took a spectrum in sniffing mode, which displayed a suite of 16 organic compounds, including many nitrogen-bearing species but no sulfur-bearing species, and four compounds—methyl isocyanate, acetone, propionaldehyde, and acetamide—that had not previously been reported in comets.
View Article and Find Full Text PDFThe COSAC (Cometary Sampling and Composition Experiment) onboard the Rosetta mission is a combined gas chromatograph (GC)-mass spectrometer (MS). It is situated on Philae, the lander of the mission, which is intended to land on the nucleus of comet 67P/Churyumov- Gerasimenko. The purpose of the experiment is to analyze the volatile fraction of soil samples retrieved by a drill.
View Article and Find Full Text PDFAs part of the development of the European Space Agency Rosetta space mission to investigate a cometary nucleus, the selection of columns dedicated to the gas chromatographic subsystem of the Cometary Sampling and Composition (COSAC) experiment was achieved. Once the space probe launched, these columns will be exposed to the harsh environmental constraints of space missions: vibrations, radiation (by photons or energetic particles), space vacuum, and large temperature range. In order to test the resistance of the flight columns and their stationary phases, the columns were exposed to these rough conditions reproduced in the laboratory.
View Article and Find Full Text PDFThe cometary sampling and composition (COSAC) experiment is one of the principal experiments of the surface lander probe of the European Space Agency Rosetta mission to be launched in January 2003. The instrument is designed for the in situ chemical analysis of a cometary nucleus as the details of the nucleus composition are of primary importance for understanding both the formation of the solar system, and the origin of life on Earth. The COSAC experiment consists of an evaporation/pyrolysis device and two analytical systems: a multi-column gas chromatograph and a high-resolution time-of-flight mass spectrometer which may either be operated alone or in a coupled mode.
View Article and Find Full Text PDFAmino acids are the essential molecular components of living organisms on Earth, but the proposed mechanisms for their spontaneous generation have been unable to account for their presence in Earth's early history. The delivery of extraterrestrial organic compounds has been proposed as an alternative to generation on Earth, and some amino acids have been found in several meteorites. Here we report the detection of amino acids in the room-temperature residue of an interstellar ice analogue that was ultraviolet-irradiated in a high vacuum at 12 K.
View Article and Find Full Text PDF