Evaluation of relevant seed traits is an essential part of most plant breeding and biotechnology programmes. There is a need for non-destructive, three-dimensional assessment of the morphometry, composition, and internal features of seeds. Here, we introduce a novel tool, MRI-Seed-Wizard, which integrates deep learning algorithms with non-invasive magnetic resonance imaging (MRI) for use in a new domain-plant MRI.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) is a versatile technique in the biomedical field, but its application to the study of plant metabolism in vivo remains challenging because of magnetic susceptibility problems. In this study, we report the establishment of chemical exchange saturation transfer (CEST) for plant MRI. This method enables noninvasive access to the metabolism of sugars and amino acids in complex sink organs (seeds, fruits, taproots, and tubers) of major crops (maize, barley, pea, potato, sugar beet, and sugarcane).
View Article and Find Full Text PDFThe initial free expansion of the embryo within a seed is at some point inhibited by its contact with the testa, resulting in its formation of folds and borders. Although less obvious, mechanical forces appear to trigger and accelerate seed maturation. However, the mechanistic basis for this effect remains unclear.
View Article and Find Full Text PDFProtein deficiency is recognized among the major global health issues with an underestimation of its importance. Genetic biofortification is a cost-effective and sustainable strategy to overcome global protein malnutrition. This study was designed to focus on protein-dense grains of wheat ( L.
View Article and Find Full Text PDF