The selection of the polarity of ZnO nanowires grown by chemical bath deposition offers a great advantage for their integration into a wide variety of engineering devices. However, the nucleation process of ZnO nanowires and its dependence on their polarity is still unknown despite its importance for optimizing their morphology and properties and thus to enhance the related device performances. To tackle this major issue, we combine an analysis of the nucleation process of O- and Zn-polar ZnO nanowires on O- and Zn-polar ZnO single crystals, respectively, using synchrotron radiation-based grazing incidence X-ray diffraction with transmission and scanning electron microscopy.
View Article and Find Full Text PDFNanotechnology
September 2020
In the present study we combined, in the same synchrotron x-ray experiment, reciprocal space mapping, multiwavelength anomalous diffraction and diffraction anomalous fine structure, to determine the strain, crystallographic polarity, alloy composition and ordering at the atomic scale in [0001]-oriented AlGaN nanowires grown by molecular beam epitaxy on GaN nanowire bases. The information that we obtained was averaged over a macroscopic ensemble of NWs. We found from the diffraction anomalous fine structure that there were an isotropic increased number of Ga-Ga pairs in the Ga next nearest coordination shell (cation sublattice) with respect to what is expected for the AlGaN alloy composition determined by anomalous diffraction.
View Article and Find Full Text PDFInGaAs is one of the III-V active semiconductors used in modern high-electron-mobility transistors or high-speed electronics. ZnO is a good candidate material to be inserted as a tunneling insulator layer at the metal-semiconductor junction. A key consideration in many modern devices is the atomic structure of the hetero-interface, which often ultimately governs the electronic or chemical process of interest.
View Article and Find Full Text PDF