Recently, MnTe was established as an altermagnetic material that hosts spin-polarized electronic bands as well as anomalous transport effects like the anomalous Hall effect. In addition to these effects arising from altermagnetism, MnTe also hosts other magnetoresistance effects. Here, we study the manipulation of the magnetic order by an applied magnetic field and its impact on the electrical resistivity.
View Article and Find Full Text PDFPhases with spontaneous time-reversal ( ) symmetry breaking are sought after for their anomalous physical properties, low-dissipation electronic and spin responses, and information-technology applications. Recently predicted altermagnetic phase features an unconventional and attractive combination of a strong -symmetry breaking in the electronic structure and a zero or only weak-relativistic magnetization. In this work, we experimentally observe the anomalous Hall effect, a prominent representative of the -symmetry breaking responses, in the absence of an external magnetic field in epitaxial thin-film MnSi with a vanishingly small net magnetic moment.
View Article and Find Full Text PDFLifted Kramers spin degeneracy (LKSD) has been among the central topics of condensed-matter physics since the dawn of the band theory of solids. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology to topological quantum matter. Traditionally, LKSD has been considered to originate from two possible internal symmetry-breaking mechanisms.
View Article and Find Full Text PDFThe anomalous Hall effect, commonly observed in metallic magnets, has been established to originate from the time-reversal symmetry breaking by an internal macroscopic magnetization in ferromagnets or by a noncollinear magnetic order. Here we observe a spontaneous anomalous Hall signal in the absence of an external magnetic field in an epitaxial film of MnTe, which is a semiconductor with a collinear antiparallel magnetic ordering of Mn moments and a vanishing net magnetization. The anomalous Hall effect arises from an unconventional phase with strong time-reversal symmetry breaking and alternating spin polarization in real-space crystal structure and momentum-space electronic structure.
View Article and Find Full Text PDFNon-collinear antiferromagnets are revealing many unexpected phenomena and they became crucial for the field of antiferromagnetic spintronics. To visualize and prepare a well-defined domain structure is of key importance. The spatial magnetic contrast, however, remains extraordinarily difficult to be observed experimentally.
View Article and Find Full Text PDF