The abnormally thick glycocalyx of cancer cells can provide a physical barrier to immune cell recognition and effective immunotherapy. Here, we demonstrate an optical method based on Scanning Angle Interference Microscopy (SAIM) for the screening of therapeutic agents that can disrupt the glycocalyx layer as a strategy to improve anti-cancer immune responses. We developed a new membrane labeling strategy utilizing leucine zipper pairs to fluorescently mark the glycocalyx layer boundary for precise and robust measurement of glycocalyx thickness with SAIM.
View Article and Find Full Text PDFThe low friction nature of articular cartilage has been attributed to the synergistic interaction between lubricin and hyaluronic acid in the synovial fluid (SF). Lubricin is a mucinous glycoprotein that lowers the boundary mode coefficient of friction of articular cartilage in a dose-dependent manner. While there have been multiple attempts to produce recombinant lubricin and lubricin mimetic cartilage lubricants over the last two decades, these materials have not found clinical use due to challenges associated with large scale production, manufacturing, and purification.
View Article and Find Full Text PDFProgressive cartilage degradation, synovial inflammation, and joint lubrication dysfunction are key markers of osteoarthritis. The composition of synovial fluid (SF) is altered in OA, with changes to both hyaluronic acid and lubricin, the primary lubricating molecules in SF. Lubricin's distinct bottlebrush mucin domain has been speculated to contribute to its lubricating ability, but the relationship between its structure and mechanical function in SF is not well understood.
View Article and Find Full Text PDFObjective: To describe the development and maturation of equine proximal sesamoid bones (PSBs) in fetuses and young horses using radiography, microcomputed (micro)-CT, and histology.
Methods: A descriptive study. Forelimb PSBs from 12 equids ranging in age from 105 days of gestation to 540 days postgestation were evaluated.