Publications by authors named "H Ramezani"

This study investigated the ability of Phyllanthus emblica encapsulated within chitosan-coated casein (CS-casein-Amla) nanoparticles to inhibit the growth of multi-drug-resistant Pseudomonas aeruginosa (P. aeruginosa) bacteria and prevent the formation of biofilms. The MDR strains underwent screening, and the morphological characteristics of the resulting nanoparticles were assessed using SEM, DLS, and FTIR.

View Article and Find Full Text PDF

Hypothesis: Mesophase dispersions are promising colloids for removing micropollutants from water. We hypothesized that the complex internal nanostructure and tunable lipid/water interface amounts play a crucial role in absorbed quantities. Modifications in interfacial organization within the particles while trapping the micropollutant is assumed.

View Article and Find Full Text PDF
Article Synopsis
  • Optical resonators are essential components in photonic systems, facilitating the development of meta-surfaces, sensors, and transmission filters.
  • Sub-wavelength resonators like planar split-ring resonators are significant for their capabilities in light manipulation and sensing, as well as for studying light-matter interactions.
  • The study employs near-field microscopy to investigate circular split-ring resonators with single layer graphene, leading to detailed mapping of electric field distributions which is crucial for applications like high harmonic generation.
View Article and Find Full Text PDF

This study aimed to assess the delamination detection in FMLs via the finite element (FE) simulations of Lamb wave propagation. An FE model of an FML specimen with [Al/90/Al/90/Al] layup was developed. Delamination damage of 10 and 25 mm diameters was induced between different layers of the FML specimen.

View Article and Find Full Text PDF

The paper proposes a data-driven fault-tolerant control (FTC) strategy to construct and accommodate the bias on ambient temperature measurements in supermarket refrigeration systems. The bias, which is caused by direct or indirect exposure of the sensor to the sun, can have a significant impact on the refrigeration system's energy consumption. Based on analysis of the real data a comprehensive model of the bias is developed and then used to generate realistic scenarios for testing the proposed FTC method.

View Article and Find Full Text PDF