Publications by authors named "H Rahimian"

Objective: Retention rates of lipotransfer remain variable, with the underlying cause associated with tissue oxygenation and blood supply barriers. One promising new method of improving tissue oxygenation is micro/nanobubbles (MNBs), which are small gas bubbles (<100 μm) generated within a saline solution. MNBs are stable and carry a significant amount of oxygen, and because of their negatively charged surface characteristics, they are an ideal oxygen-delivery solution.

View Article and Find Full Text PDF

Background: Identification and characterization of the endophytic microorganism, is gaining their underestimated significance in influencing health, performance, and other biological attributions of plants in general and forest tree species in particular. Because of the scarcity of information on the endophytic microbiome of the Hyrcanian forests species, including hornbeam (Carpinus betulus L.) trees, as a major constituent thereof, the present study aimed at the identification and partial characterization of the endophytic Bacillus species of Carpinus betulus as the first step in this context.

View Article and Find Full Text PDF

Genetic studies in mice and human cancers established BCL11B as a haploinsufficient tumor suppressor gene. Paradoxically, BCL11B is overexpressed in some human cancers where its knockdown is synthetic lethal. We identified the BCL11B protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1.

View Article and Find Full Text PDF

Background: In developing countries, neonatal sepsis is one of the major causes of mortality and morbidity. Vitamin A deficiency also affects the immune system severely and is associated with various neonatal infections. We aimed to compare maternal and neonatal vitamin A levels among neonates with and without late-onset sepsis.

View Article and Find Full Text PDF

We identified the BCL11A protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. , DNA repair assays demonstrate that both BCL11A and a small recombinant BCL11A protein that is devoid of DNA binding and transcription regulatory domains can stimulate the enzymatic activities of two base excision repair enzymes: NTHL1 and DNA Pol β. Increased DNA repair efficiency, in particular of the base excision repair pathway, is essential for many cancer cells to proliferate in the presence of elevated reactive oxygen species (ROS) produced by cancer-associated metabolic changes.

View Article and Find Full Text PDF