β-glucan consumption is known for its beneficial health effects, but the mode of action is unclear. While humans and mice lack the required enzymes to digest β-glucans, certain intestinal microbes can digest β-glucans, triggering gut microbial changes. Curdlan, a particulate β-glucan isolated from , is used as a food additive.
View Article and Find Full Text PDFThe major disadvantage of the current gold standard for detection of the food pathogen Campylobacter, i.e. culturing, is the lengthy procedure.
View Article and Find Full Text PDFIn the present double-blind, randomised, parallel intervention study, the effects of the intake of galacto-oligosaccharides (GOS) on the gut microbiota of twelve healthy adult subjects (aged 18-45 years with a normal BMI (18-25 kg/m²)) receiving amoxicillin (AMX) treatment were determined. All the subjects were treated with AMX (375 mg; three times per d) for 5 d and given either GOS (n 6) or placebo (maltodextrin, n 6) (2·5 g; three times per d) during and 7 d after AMX treatment. Faecal samples were collected twice before starting the treatment and on days 2, 5, 8, 12, 19 and 26.
View Article and Find Full Text PDFFructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli.
View Article and Find Full Text PDFLactobacillus reuteri strain 121 produces a unique, highly branched, soluble glucan in which the majority of the linkages are of the alpha-(1-->4) glucosidic type. The glucan also contains alpha-(1-->6)-linked glucosyl units and 4,6-disubstituted alpha-glucosyl units at the branching points. Using degenerate primers, based on the amino acid sequences of conserved regions from known glucosyltransferase (gtf) genes from lactic acid bacteria, the L.
View Article and Find Full Text PDF