The cycling between active and inactive states of the catalytic center of [NiFe]-hydrogenase from Allochromatium vinosum has been investigated by dynamic electrochemical techniques. Adsorbed on a rotating disk pyrolytic graphite "edge" electrode, the enzyme is highly electroactive: this allows precise manipulations of the complex redox chemistry and facilitates quantitative measurements of the interconversions between active catalytic states and the inactive oxidized form Ni(r) (also called Ni-B or "ready") as functions of pH, H(2) partial pressure, temperature, and electrode potential. Cyclic voltammograms for catalytic H(2) oxidation (current is directly related to turnover rate) are highly asymmetric (except at pH > 8 and high temperature) due to inactivation being much slower than activation.
View Article and Find Full Text PDFIt is no surprise that the catalytic activity of electron-transport enzymes may be optimised at certain electrochemical potentials in ways that are analogous to observations of pH-rate optima. This property is observed clearly in experiments in which an enzyme is adsorbed on an electrode surface which can supply or receive electrons rapidly and in a highly controlled manner. In such a way, the rate of catalysis can be measured accurately as a function of the potential (driving force) that is applied.
View Article and Find Full Text PDFProtein film voltammetry is used to probe the energetics of electron transfer and substrate binding at the active site of a respiratory flavoenzyme--the membrane-extrinsic catalytic domain of Escherichia coli fumarate reductase (FrdAB). The activity as a function of the electrochemical driving force is revealed in catalytic voltammograms, the shapes of which are interpreted using a Michaelis-Menten model that incorporates the potential dimension. Voltammetric experiments carried out at room temperature under turnover conditions reveal the reduction potentials of the FAD, the stability of the semiquinone, relevant protonation states, and pH-dependent succinate--enzyme binding constants for all three redox states of the FAD.
View Article and Find Full Text PDFThe succinate dehydrogenases (SDH: soluble, membrane-extrinsic subunits of succinate:quinone oxidoreductases) from Escherichia coli and beef heart mitochondria each adsorb at a pyrolytic graphite 'edge' electrode and catalyse the interconversion of succinate and fumarate according to the electrochemical potential that is applied. E. coli and beef heart mitochondrial SDH share only ca.
View Article and Find Full Text PDFThe nickel-iron hydrogenase from Chromatium vinosum adsorbs at a pyrolytic graphite edge-plane (PGE) electrode and catalyzes rapid interconversion of H(+)((aq)) and H(2) at potentials expected for the half-cell reaction 2H(+) right arrow over left arrow H(2), i.e., without the need for overpotentials.
View Article and Find Full Text PDF