Publications by authors named "H R Parri"

Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process.

View Article and Find Full Text PDF

Altered energy metabolism in Alzheimer's disease (AD) is a major pathological hallmark implicated in the early stages of the disease process. Astrocytes play a central role in brain homeostasis and are implicated in multiple neurodegenerative diseases. Although numerous studies have investigated global changes in brain metabolism, redox status, gene expression and epigenetic markers in AD, the intricate interplay between different metabolic processes, particularly in astrocytes, remains poorly understood.

View Article and Find Full Text PDF

Changes to sensory experience result in plasticity of synapses in the cortex. This experience-dependent plasticity (EDP) is a fundamental property of the brain. Yet, while much is known about neuronal roles in EDP, very little is known about the role of astrocytes.

View Article and Find Full Text PDF

Selective Serotonin Reuptake Inhibitors (SSRIs) may hold therapeutic benefits for people with Alzheimer's disease (AD). SSRIs may perturb AD progression, or the conversion from MCI to AD, via increased neurogenesis, reduced oxidative stress and/or favourable Amyloid-β Precursor Protein (AβPP) processing. This study used iPSC derived cortical neuronal cells carrying 3 different PSEN1 mutations, to investigate the effect of treatment with the SSRI, Citalopram on AβPP processing and oxidative stress.

View Article and Find Full Text PDF

Objective: Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to be involved in the generation of absence seizures (ASs), and there is evidence that cortical and thalamic HCN channel dysfunctions may have a proabsence role. Many HCN channel blockers are available, but their role in ASs has been investigated only by localized brain injection or in in vitro model systems due to their limited brain availability. Here, we investigated the effect on ASs of orally administered ivabradine (an HCN channel blocker approved for the treatment of heart failure in humans) following injection of the P-glycoprotein inhibitor elacridar, which is known to increase penetration into the brain of drug substrates for this efflux transporter.

View Article and Find Full Text PDF