This study investigates the use of multi-layered porous media (MLPM) to enhance thermal energy transfer within a counterflow double-pipe heat exchanger (DPHE). We conducted computational fluid dynamics (CFD) simulations on DPHEs featuring five distinct MLPM configurations, analyzed under both fully filled and partially filled conditions, alongside a conventional DPHE. The impact of various parameters such as porous layer arrangements, thickness, and flow Reynolds numbers on pressure drop, logarithmic mean temperature difference (LMTD), and performance evaluation criterion (PEC) was assessed.
View Article and Find Full Text PDFThe presence of antibiotic pollutants in water and wastewater can cause significant risks to the environment in different aspects. Therefore, antibiotics need to be removed from water. This study investigates the adsorption of nalidixic acid (NA), a common antibiotic, using bovine serum albumin nanoparticles (BSA NPs).
View Article and Find Full Text PDFThis research focuses on utilizing non-uniform magnetic fields, induced by dipoles, to control and enhance thermal energy transfer in a two-dimensional cooling conduit including a double backward-facing step. The presence of electronic equipment along the straight channel path creates such arrangements, and cooling is often ineffective in the corners of the formed steps. The use of a non-constant magnetic field is a passive technique to improve the cooling rate in these sections without changing the internal geometry, thereby increasing the heat transfer rate.
View Article and Find Full Text PDFDiastolic dysfunction (DD) in heart failure is associated with increased myocardial cytosolic calcium and calcium-efflux through the sodium-calcium exchanger depends on the sodium gradient. Beta-3-adrenoceptor (β3-AR) agonists lower cytosolic sodium and have reversed organ congestion. Accordingly, β3-AR agonists might improve diastolic function, which we aimed to assess.
View Article and Find Full Text PDF