Publications by authors named "H R Arnstein"

The anticancer drug tamoxifen inhibits lipid peroxidation in ox-brain phospholipid liposomes, and is a good antiyeast agent, with clinical potential. We now report that the ergosterol-containing lipid fraction derived from yeast microsomal membranes (and the ergosterol separated from it) inhibited lipid peroxidation when introduced into ox-brain phospholipid liposomes. Inhibition of lipid peroxidation by the lipid fraction was greatly enhanced when yeast cell growth was inhibited with tamoxifen prior to lipid extraction.

View Article and Find Full Text PDF

Tamoxifen and 4-hydroxytamoxifen were both good inhibitors of iron-dependent lipid peroxidation in rat cardiac microsomes. Tamoxifen was also a good inhibitor of lipid peroxidation in liposomes prepared from the phospholipid obtained from rat liver microsomes. In a modified rat liver microsomal system containing a sufficiently low amount of peroxidizable phospholipid to make it comparable with the rat cardiac microsomal system, tamoxifen and 4-hydroxytamoxifen were of similar effectiveness as in the cardiac system.

View Article and Find Full Text PDF

Droloxifene (3-hydroxytamoxifen), is a triphenylethylene derivative recently developed for the treatment of breast cancer. Droloxifene was found to exhibit a membrane antioxidant ability in that it inhibited Fe(III)-ascorbate dependent lipid peroxidation in rat liver microsomes and ox-brain phospholipid liposomes. It also inhibited microsomal lipid peroxidation induced by Fe(III)-ADP/NADPH.

View Article and Find Full Text PDF

The anti-cancer drug tamoxifen is a potent inhibitor of lipid peroxidation induced by Fe(III)-ascorbate in ox-brain phospholipid liposomes. Similar anti-oxidant effects, but with varying potencies, are also shown by 4-hydroxy-tamoxifen, cholesterol, ergosterol and 17-beta-oestradiol. We now describe a computer-graphic fitting technique that demonstrates a structural similarity between the five compounds.

View Article and Find Full Text PDF

The azole antifungal drug ketoconazole was found to inhibit Fe(III)-ascorbate dependent lipid peroxidation using either rat liver microsomes or ox-brain phospholipid liposomes as the substrate. It also inhibited microsomal peroxidation induced by the Fe(III)-ADP/NADPH system. The related azoles, miconazole and clotrimazole, were much weaker inhibitors than ketoconazole.

View Article and Find Full Text PDF