Publications by authors named "H Piwnica-Worms"

Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) that fails to respond to neoadjuvant chemotherapy (NACT) can be lethal. Developing effective strategies to eradicate chemoresistant disease requires experimental models that recapitulate the heterogeneity characteristic of TNBC. To that end, we established a biobank of 92 orthotopic patient-derived xenograft (PDX) models of TNBC from the tumors of 75 patients enrolled in the ARTEMIS clinical trial ( NCT02276443 ) at MD Anderson Cancer Center, including 12 longitudinal sets generated from serial patient biopsies collected throughout NACT and from metastatic disease.

View Article and Find Full Text PDF

Triple negative breast cancer (TNBC) accounts for 15-20% of breast cancer cases in the United States. Systemic neoadjuvant chemotherapy (NACT), with or without immunotherapy, is the current standard of care for patients with early-stage TNBC. However, up to 70% of TNBC patients have significant residual disease once NACT is completed, which is associated with a high risk of developing recurrence within two to three years of surgical resection.

View Article and Find Full Text PDF

Resistance to poly (ADP-ribose) polymerase inhibitors (PARPi) limits the therapeutic efficacy of PARP inhibition in treating breast cancer susceptibility gene 1 (BRCA1)-deficient cancers. Here we reveal that BRCA1 has a dual role in regulating ferroptosis. BRCA1 promotes the transcription of voltage-dependent anion channel 3 (VDAC3) and glutathione peroxidase 4 (GPX4); consequently, BRCA1 deficiency promotes cellular resistance to erastin-induced ferroptosis but sensitizes cancer cells to ferroptosis induced by GPX4 inhibitors (GPX4i).

View Article and Find Full Text PDF