Lasers are used for the first time to control the production of antihydrogen (H ). Sequential, resonant charge exchange collisions are involved in a method that is very different than the only other method used so far-producing slow H during positron cooling of antiprotons in a nested Penning trap. Two attractive features are that the laser frequencies determine the H binding energy, and that the production of extremely cold H should be possible in principle-likely close to what is needed for confinement in a trap, as needed for precise laser spectroscopy.
View Article and Find Full Text PDFThe speed of antihydrogen atoms is deduced from the fraction that passes through an oscillating electric field without ionizing. The weakly bound atoms used for this first demonstration travel about 20 times more rapidly than the average thermal speed of the antiprotons from which they form, if these are in thermal equilibrium with their 4.2 K container.
View Article and Find Full Text PDFCold antihydrogen is produced when antiprotons are repeatedly driven into collisions with cold positrons within a nested Penning trap. Efficient antihydrogen production takes place during many cycles of positron cooling of antiprotons. A first measurement of a distribution of antihydrogen states is made using a preionizing electric field between separated production and detection regions.
View Article and Find Full Text PDFA background-free observation of cold antihydrogen atoms is made using field ionization followed by antiproton storage, a detection method that provides the first experimental information about antihydrogen atomic states. More antihydrogen atoms can be field ionized in an hour than all the antimatter atoms that have been previously reported, and the production rate per incident high energy antiproton is higher than ever observed. The high rate and the high Rydberg states suggest that the antihydrogen is formed via three-body recombination.
View Article and Find Full Text PDF