Saline stress is responsible for significant reductions in the growth of plants, and it globally leads to limitations in the performance of crops, especially in drought-affected areas. However, a better understanding of the mechanisms involved in the resistance of plants to environmental stress can lead to a better plant breeding and selection of cultivars. Mint is one of the most important medicinal plants, and it has important properties for industry, and for the medicinal and pharmacy fields.
View Article and Find Full Text PDFSymbiotic associations with endophytic fungi are ecologically important for medicinal and aromatic plants. Endophytic fungi highly affect the quantity and quality of herbal products. In this study, a pot experiment was carried out in the greenhouse to investigate the interactive effects of Piriformospora indica and arbuscular mycorrhizal (AMF) inoculation on the chlorophyll fluorescence, essential oil composition, and antioxidant enzymes of peppermint under saline condition.
View Article and Find Full Text PDFSalinity stress is one of the main limiting factors of medicinal plant growth and may affect their characteristics and chemical composition. In order to evaluate the response of different species of Iranian mint to salinity stress, an experiment was designed in greenhouse conditions. In this experiment, six Iranian mint species were cultivated in pots under different salinity stress including 0, 2.
View Article and Find Full Text PDFSalinity is a major environmental stress that limits crop production worldwide. It is well-understood that environmental adaptations, physiological and biochemical traits adjust salinity tolerance in plants, but imparting the knowledge gained towards crop improvement remain arduous. Utilizing the potentially of beneficial microorganisms present in the rhizosphere is an alternative strategy to improve crop production under optimal or stress conditions.
View Article and Find Full Text PDFPiriformospora indica confers salt tolerance in tomato seedlings by increasing the uptake of nutrients such as N, P and Ca, improving K/Na homoeostasis by regulating the expression of NHXs, SOS1 and CNGC15 genes, maintaining water status by regulating the expression of aquaporins. Piriformospora indica, an endophytic basidiomycete, has been shown to increase the growth and improve the plants tolerance to stressful conditions, especially salinity, by establishing the arbuscular mycorrhiza-like symbiotic relationship in various plant hosts. In the present research, the effect of NaCl treatment (150 mM) and P.
View Article and Find Full Text PDF