Beside its main purpose as a high-end tool in material analysis reaching the atomic scale for structure, chemical and electronic properties, aberration-corrected scanning transmission electron microscopy (STEM) is increasingly used as a tool to manipulate materials down to that very same scale. In order to obtain exact and reproducible results, it is essential to consider the interaction processes and interaction ranges between the electron beam and the involved materials. Here, we show in situ that electron beam-induced etching in a low-pressure oxygen atmosphere can extend up to a distance of several nm away from the Ångström-size electron beam, usually used for probing the sample.
View Article and Find Full Text PDFSupport foils for (scanning) transmission electron microscopy ((S)TEM) samples are commonly amorphous carbon foils. State of the art (S)TEM high resolution imaging methods use ultra-thin carbon foils of only a few nm thickness, especially for imaging beam sensitive materials with low acceleration voltages and electron fluxes. In this study we analyze in situ the effect of chemical etching on a 2 nm amorphous carbon foil due to residual oxygen and by leaking in oxygen into the microscope column.
View Article and Find Full Text PDFWe demonstrate electrodeposition as a synthesis method for fabrication of Al coatings, up to 10 μm thick, containing a high density of genuine growth twins. This has not been expected since the twin boundary energy of pure Al is very high. TEM methods were used to analyze deposited Al and its nanoscaled twins.
View Article and Find Full Text PDFFluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. By analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result demonstrates some structural homology between the metallic glass and its high temperature crystalline phase.
View Article and Find Full Text PDFA novel synthesis strategy is presented for depositing metallic Ag at the anode during simultaneous electrochemical oxidation of Al. This unexpected result is achieved based on galvanic coupling. Metallic dendritic nanostructures well-anchored in a high surface area supporting matrix are envisioned to open up a new avenue of applications.
View Article and Find Full Text PDF