Publications by authors named "H Passareiro"

The inhibitory effect of calmodulin on the assembly of mature and immature rat brain microtubules was compared with that of the two major structural domains of this protein, the COOH-terminal fragment (amino acids 78-148) and the NH2-terminal fragment (amino acids 1-77), to determine the calmodulin structural domain responsible for the inhibitory effect on microtubule assembly. Microtubules prepared during the early stages of brain development, i.e.

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate (InsP3) 3-kinase catalyses the ATP-dependent phosphorylation of InsP3 to inositol 1,3,4,5-tetrakisphosphate (InsP4). A method is presented for the rapid purification of InsP3 3-kinase from bovine brain by calmodulin (CaM)-Sepharose affinity chromatography. Maximal activation of the purified InsP3 3-kinase by Ca2+/CaM was 6-7-fold as compared with the activity measured in the presence of EGTA (1 mM) and 10 microM-InsP3.

View Article and Find Full Text PDF

Inositol 1,4,5-trisphosphate (Ins P3) 3-kinase catalyzes the ATP-dependent phosphorylation of Ins P3 to Inositol 1,3,4,5-tetrakisphosphate (Ins P4). Ca2+/calmodulin (CaM)-sensitivity of Ins P3 3-kinase was measured in the crude soluble fraction from rat brain and different anatomic regions of bovine brain. Kinase activity was inhibited in the presence of EGTA (free Ca2+ below 1 nM) as compared to Ca2+ (10 microM free Ca2+) or Ca2+ (10 microM free Ca2+) and CaM (1 microM).

View Article and Find Full Text PDF

Primary cultures of dog thyroid cells have been used to study the effects of thyrotropin on the synthesis of proteins. The cells were cultured for 4 days in serum-free and thyrotropin-free conditions. Thyrotropin was then added for varying periods of time (6-96 h).

View Article and Find Full Text PDF

Rat brain microtubules were prepared at the adult stage and from immature (i.e., 4-day-old) animals.

View Article and Find Full Text PDF