Publications by authors named "H Pascual"

Natural killer group 2D (NKG2D) is a homodimeric activating immunoreceptor whose function is to detect and eliminate compromised cells upon binding to the NKG2D ligands (NKG2DL) major histocompatibility complex (MHC) molecules class I-related chain A (MICA) and B (MICB) and UL16 binding proteins (ULBP1-6). While typically present at low levels in healthy cells and tissue, NKG2DL expression can be induced by viral infection, cellular stress or transformation. Aberrant activity along the NKG2D/NKG2DL axis has been associated with autoimmune diseases due to the increased expression of NKG2D ligands in human disease tissue, making NKG2D inhibitors an attractive target for immunomodulation.

View Article and Find Full Text PDF

Eukaryotic DNA-dependent RNA polymerases (Pols I-III) encode two distinct alpha-like heterodimers where one is shared between Pols I and III, and the other is unique to Pol II. Human alpha-like subunit mutations are associated with several diseases including Treacher Collins Syndrome (TCS), 4H leukodystrophy, and primary ovarian sufficiency. Yeast is commonly used to model human disease mutations, yet it remains unclear whether the alpha-like subunit interactions are functionally similar between yeast and human homologs.

View Article and Find Full Text PDF
Article Synopsis
  • NKG2D is a receptor that helps activate immune responses against infections and stress but can also contribute to chronic inflammation and autoimmune diseases, making it a target for new treatments.
  • The study outlines a strategy for identifying small molecules that can inhibit NKG2D's protein interactions via a unique mechanism that alters the receptor's structure.
  • Researchers used various biochemical methods and drug design techniques to enhance the effectiveness and properties of one series of inhibitors, showing it's feasible to disrupt the NKG2D interaction with its ligands through allosteric modulation.
View Article and Find Full Text PDF

Background: POLR1D is a subunit of RNA Polymerases I and III, which synthesize ribosomal RNAs. Dysregulation of these polymerases cause several types of diseases, including ribosomopathies. The craniofacial disorder Treacher Collins Syndrome (TCS) is a ribosomopathy caused by mutations in several subunits of RNA Polymerase I, including POLR1D.

View Article and Find Full Text PDF