Levitation of very small but macroscopic objects is a rapidly developing interrogation technique for nanooptics and optomechanics. Paul traps are one mechanism for levitation of charged particles, which enables interrogation of novel materials or optically active samples in a virtually interaction-free environment, providing a test-bed for completely new experiments. Elementary traps have already been demonstrated for nano- and microparticles as a proof-of-principle for such experiments.
View Article and Find Full Text PDFWe report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm(3) in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package.
View Article and Find Full Text PDFSymmetry breaking phase transitions play an important role in nature. When a system traverses such a transition at a finite rate, its causally disconnected regions choose the new broken symmetry state independently. Where such local choices are incompatible, topological defects can form.
View Article and Find Full Text PDFRev Sci Instrum
February 2011
We report a simple, efficient, high voltage radio frequency (RF) generator powered by a single voltage source (1.5-7 V) to resonantly drive ion traps or other capacitive loads. Our circuit is able to deliver RF voltages > 500 V(p-p) at frequencies ranging from 0.
View Article and Find Full Text PDF