Genes involved in regulating the hypothalamic-pituitary-adrenal (HPA) axis, including the glucocorticoid receptor (GR), are linked to various stress-related psychopathologies including bipolar disorder as well as other mood and trauma-related disorders. The protein product of the cell cycle gene, is a GR interaction partner in peripheral cells. However, the precise roles of SKA2 in stress and GR signaling in the brain, specifically in nonreplicating postmitotic neurons, and its involvement in HPA axis regulation remain unclear.
View Article and Find Full Text PDFDepression is a stress-associated disorder, and it represents a major global health issue. Its pathophysiology is complex and remains insufficiently understood, with current medications often showing limited efficacy and undesirable side effects. Here, we identify imbalanced polyamine levels and dysregulated autophagy as key components of the acute stress response in humans, and as hallmarks of chronic stress and depressive disorders.
View Article and Find Full Text PDFBackground And Hypothesis: The amygdala, crucial for mood, anxiety, fear, and reward regulation, shows neuroanatomical and molecular divergence in psychiatric disorders like schizophrenia, bipolar disorder and major depression. This region is also emerging as an important regulator of metabolic and immune pathways. The goal of this study is to address the paucity of molecular studies in the human amygdala.
View Article and Find Full Text PDFBackground: Many patients with bipolar disorder (BD) do not respond to or have difficulties tolerating lithium and/or other mood stabilizing agents. There is a need for personalized treatments based on biomarkers in guiding treatment options. The calcium voltage-gated channel CACNA1C is a promising candidate for developing personalized treatments.
View Article and Find Full Text PDF