Publications by authors named "H P Zeitler"

Thermolysis of [(BPI)Pt(CH)][OTf] (BPI = 1,3-bis(2-(4--butyl)pyridylimino)isoindole) to release methane and form (BPI)Pt(OTf) is reported. Kinetic, mechanistic, and computational studies point to an unusual anion-assisted pathway that obviates the need for a higher oxidation state intermediate to couple the metal-bound methyl group with the ligand-bound hydrogen. Leveraging this insight, a triflimide derivative of the (BPI)Pt complex was shown to activate benzene, highlighting the role of the counteranion in controlling the activity of these complexes.

View Article and Find Full Text PDF

A simple and convergent way to synthesize 2-amino-6-bromonaphthalenes involves condensation of free secondary amines with the corresponding 2-naphthol under Bucherer conditions. The amination protocol relies on common Teflon-capped pressure flasks and has been used to modify the tertiary aminonaphthalene core of DANPY, a biocompatible chromophore shown to be safe and effective for staining a variety of cellular targets. Following a Suzuki reaction with pyridine 4-boronic acid, additional diversity is introduced upon -alkylation to install the pyridinium cation.

View Article and Find Full Text PDF

Introduction: The administration of FVIII leads to inhibitors in up to 30% of patients with hemophilia A (HA), the most severe treatment complication. FVIII-mannosylation fosters the presentation of FVIII to CD4-T-lymphocytes. Mannose as primary ligand for the mannose-binding lectin (MBL) activates the lectin pathway of complement.

View Article and Find Full Text PDF

Background: Cytokines and chemokines (CC) play a central role in immunoregulatory and inflammatory processes. Neutralising antibodies for single proinflammatory cytokines have developed into a powerful, though expensive and not always curative therapeutic strategy for severe diseases. Considering the redundancy of CC functions, network (N) rather than single target approaches are essential.

View Article and Find Full Text PDF