Publications by authors named "H P Stalder"

Article Synopsis
  • - Approved vaccines are good for preventing severe COVID-19, but new variants and transmission need a stronger immune response, leading to the creation of modified live-attenuated vaccines (LAVs) that recode the SARS-CoV-2 genome.
  • - The new vaccines, called OTS-206 and OTS-228, are designed to be safe and effective, with OTS-228 showing no side effects or transmission in animal studies, and can be given intranasally.
  • - A single dose of OTS-228 not only provides strong immunity against the original SARS-CoV-2 strain but also offers broad protection against variants like Omicron, making this approach potentially valuable for other emerging viruses as well. *
View Article and Find Full Text PDF

Feline infectious peritonitis (FIP) is a fatal feline disease, caused by a feline coronavirus (FCoV), namely feline infectious peritonitis virus (FIPV). We produced a baby hamster kidney 21 (BHK) cell line expressing a serotype I FCoV replicon RNA with a green fluorescent protein (GFP) reporter gene (BHK-F-Rep) and used it as an screening system to test different antiviral compounds. Two inhibitors of the FCoV main protease (M), namely GC376 and Nirmatrelvir, as well as the nucleoside analog Remdesivir proved to be effective in inhibiting the replicon system.

View Article and Find Full Text PDF

Porcine epidemic diarrhea virus is a swine pathogen that has been responsible for significant animal and economic losses worldwide in recent years. In this manuscript, we report the generation of a reverse genetics system C(RGS) for the highly virulent US PEDV strain Minnesota (PEDV-MN; GenBank accession number KF468752), which was based on the assembly and cloning of synthetic DNA, using vaccinia virus as a cloning vector. Viral rescue was only possible following the substitution of 2 nucleotides within the 5'UTR and 2 additional nucleotides within the spike gene, based on the sequence of the cell culture-adapted strains.

View Article and Find Full Text PDF
Article Synopsis
  • The Omicron-BA.1 variant of concern became the dominant strain globally in early 2022, prompting the need for extensive research using primary cell cultures and animal models to understand its characteristics compared to the Delta variant.* -
  • In laboratory studies, Omicron-BA.1 showed increased early replication in human nasal cells but less replication in bronchial cells; however, in animal models like hamsters and ferrets, Delta variant remained more dominant.* -
  • The research revealed that the spike gene from Omicron-BA.1 leads to lower replication and pathogenicity in certain mice, while also indicating that this variant may escape immune responses generated by mRNA vaccines, contributing to its dominance over other variants.*
View Article and Find Full Text PDF

In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in Saudi Arabia and was mostly associated with severe respiratory illness in humans. Dromedary camels are the zoonotic reservoir for MERS-CoV. To investigate the biology of MERS-CoV in camelids, we developed a well-differentiated airway epithelial cell (AEC) culture model for Llama glama and Camelus bactrianus.

View Article and Find Full Text PDF