Background: To determine outcomes of MRI-assisted radiosurgery (MARS) for salvage brachytherapy using the radioisotope Pd after various upfront treatments including surgery, external beam radiotherapy, and brachytherapy.
Methods: We retrospectively reviewed data for patients who underwent salvage MARS for intraprostatic lesions or prostate bed recurrences from 2016 to 2022. Biochemical recurrence, prostate cancer-specific, and overall survival, and the cumulative incidences of toxicities, were determined by Kaplan-Meier estimates.
Advancements in radiotherapy technology now enable the delivery of ablative doses to targets in the upper urinary tract, including primary renal cell carcinoma (RCC) or upper tract urothelial carcinomas (UTUC), and secondary involvement by other histologies. Magnetic resonance imaging-guided linear accelerators (MR-Linacs) have shown promise to further improve the precision and adaptability of stereotactic body radiotherapy (SBRT). This single-institution retrospective study analyzed 34 patients (31 with upper urinary tract non-metastatic primaries [RCC or UTUC] and 3 with metastases of non-genitourinary histology) who received SBRT from August 2020 through September 2024 using a 1.
View Article and Find Full Text PDFPurpose: Trimodality therapy for muscle-invasive bladder cancer (MIBC) yields similar oncologic outcomes compared to radical cystectomy in appropriately selected patients; however, data regarding locally advanced MIBC (LA-MIBC) is limited. We explored our experience with LA-MIBC undergoing radiation therapy (RT).
Methods: We retrospectively identified 30 patients from an institutional prospectively collated database with non-metastatic, LA-MIBC.
To provide an advanced therapy for wound recovery, in this study, pasteurized bovine milk-derived exosomes (mEXO) are immobilized onto a polydopamine (PDA)-coated hyaluronic acid (HA)-based electrospun nanofibrous matrix (mEXO@PMAT) via a simple dip-coating method to formulate an mEXO-immobilized mesh as a wound-healing biomaterial. Purified mEXOs (∼82 nm) contain various anti-inflammatory, cell proliferation, and collagen synthesis-related microRNAs (miRNAs), including let-7b, miR-184, and miR-181a, which elicit elevated mRNA expression of keratin5, keratin14, and collagen1 in human keratinocytes (HaCaT) and fibroblasts (HDF). The mEXOs immobilized onto the PDA-coated meshes are gradually released from the meshes over 14 days without burst-out effect.
View Article and Find Full Text PDF