Precise repair of the pathogenic mutation in hematopoietic stem cells (HSCs) represents an ideal cure for patients with sickle cell disease (SCD). Here, we demonstrate correction of the SCD phenotype by converting the sickle mutation codon (GTG) into a benign G-Makassar variant (GCG) using in vivo base editing in HSCs. We show successful production of helper-dependent adenoviral vectors expressing an all-in-one base editor mapping to the sickle mutation site.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2024
We developed an HSC gene therapy approach that consists of HSC mobilization and intravenous injection of HSC-tropic HDAd vectors. To achieve therapeutically relevant numbers of corrected cells, we incorporated expansion of transduced cells. We used an HDAd vector for a multiplex adenine base editing approach to (1) remove the region within CD33 that is recognized by gemtuzumab ozogamicin (GO) (Mylotarg), and (2) create therapeutic edits within the HBG1/2 promoters to reactivate γ-globin/HbF.
View Article and Find Full Text PDFCurrent CD33-targeted immunotherapies typically recognize the membrane-distal V-set domain of CD33. Here, we show that decreasing the distance between T cell and leukemia cell membrane increases the efficacy of CD33 chimeric antigen receptor (CAR) T cells. We therefore generated and optimized second-generation CAR constructs containing single-chain variable fragments from antibodies raised against the membrane-proximal C2-set domain, which bind CD33 regardless of whether the V-set domain is present (CD33 antibodies).
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T-cell therapies have demonstrated transformative efficacy in treating B-cell malignancies. However, high costs and manufacturing complexities hinder their widespread use. To overcome these hurdles, we have developed the VivoVec platform, a lentiviral vector capable of generating CAR T cells in vivo.
View Article and Find Full Text PDFWe have reported the direct repair of the sickle cell mutation in vivo in a disease model using vectorized prime editors after hematopoietic stem cell (HSC) mobilization with granulocyte colony-stimulating factor (G-CSF)/AMD3100. The use of G-CSF for HSC mobilization is a hurdle for the clinical translation of this approach. Here, we tested a G-CSF-free mobilization regimen using WU-106, an inhibitor of integrin α4β1, plus AMD3100 for in vivo HSC prime editing in sickle cell disease (SCD) mice.
View Article and Find Full Text PDF