Water balance is achieved through the ability of the kidney to control water reabsorption in the connecting tubule and the collecting duct. In a mouse cortical collecting duct cell line (mCCD(c11)), physiological concentrations of arginine vasopressin increased both electrogenic, amiloride-sensitive, epithelial sodium channel (ENaC)-mediated sodium transport measured by the short-circuit current (Isc) method and water flow (Jv apical to basal) measured by gravimetry with similar activation coefficient K(1/2) (6 and 12 pM, respectively). Jv increased linearly according to the osmotic gradient across the monolayer.
View Article and Find Full Text PDFLithium therapy frequently induces nephrogenic diabetes insipidus; amiloride appears to prevent its occurrence in some clinical cases. Amiloride blocks the epithelial sodium channel (ENaC) located in the apical membrane of principal cells; hence one possibility is that ENaC is the main entry site for lithium and the beneficial effect of amiloride may be through inhibiting lithium entry. Using a mouse collecting duct cell line, we found that vasopressin caused an increase in Aquaporin 2 (AQP2) expression which was reduced by clinically relevant lithium concentrations similar to what is seen with in vivo models of this disease.
View Article and Find Full Text PDFThe cortical collecting duct (CCD) plays a key role in regulated K(+) secretion, which is mediated mainly through renal outer medullary K(+) (ROMK) channels located in the apical membrane. However, the mechanisms of the regulation of urinary K(+) excretion with regard to K(+) balance are not well known. We took advantage of a recently established mouse CCD cell line (mCCD(cl1)) to investigate the regulation of K(+) secretion by mineralocorticoid and K(+) concentration.
View Article and Find Full Text PDFInsulin and insulin-like growth factor 1 (IGF-1) may play a role in the regulation of sodium balance by increasing basal and aldosterone-stimulated transepithelial sodium transport in the aldosterone-sensitive distal nephron (ASDN). As insulin and IGF-1 are capable of binding to each other's receptor with a 50- to 100-fold lower affinity than to their cognate receptor, it is not clear which receptor mediates its respective sodium transport response in the ASDN. The aim of the present study was to characterize the IGF-1 regulation of Na(+) transport in the mCCD(cl1) cell line, a highly differentiated cell line which responds to physiological concentrations (K(1/2)=0.
View Article and Find Full Text PDFAldosterone controls sodium balance by regulating an epithelial sodium channel (ENaC)-mediated sodium transport along the aldosterone-sensitive distal nephron, which expresses both mineralocorticoid (MR) and glucocorticoid receptors (GR). Mineralocorticoid specificity is ensured by 11beta-hydroxysteroid dehydrogenase type 2, which metabolizes cortisol or corticosterone into inactive metabolites that are unable to bind MR and/or GR. The fractional occupancy of MR and GR by aldosterone mediating the sodium transport response in the aldosterone-sensitive distal nephron cannot be studied in vivo.
View Article and Find Full Text PDF