This study was the first to investigate the key reproductive traits of the electric lantern fish Electrona risso (Myctophidae, n = 918) and the bigscale fishes (Melamphaidae) Melamphaes polylepis (n = 260) and Scopelogadus mizolepis (n = 649). Specimens of these mesopelagic species were collected in March and April 2015 in the eastern Central Atlantic (0-24° N, 20-26° W). Sex ratio was not significantly different from 1:1 in E.
View Article and Find Full Text PDFWe present estimates of length-weight relationships (LWRs) of 55 mesopelagic fish species of 13 taxonomic families based on data collected in the eastern tropical North Atlantic (ETNA) in March/April 2015. Our data include novel records for 19 species, while for 25 species LWRs are based on the most robust sample sizes, and for 21 species they are based on the most representative size ranges available up to now. In 31 species, body lengths were within the maximum range of body lengths recorded in the area, with new records of maximum lengths for 13 species.
View Article and Find Full Text PDFThe assessment of climate impact on marine communities dwelling deeper than the well-studied shelf seas has been hampered by the lack of long-term data. For a long time, the prevailing expectation has been that thermal stability in deep ocean layers will delay ecosystem responses to warming. Few observational studies have challenged this view and indicated that deep organisms can respond exceptionally fast to physical change at the sea surface.
View Article and Find Full Text PDFMarine biota are redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2018
Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years.
View Article and Find Full Text PDF