Background And Purpose: The classical theory of receptor action has been used for decades as a powerful tool to estimate molecular determinants of ligand-induced receptor activation (i.e., affinity and efficacy) from experimentally observable biological responses.
View Article and Find Full Text PDFGPCRs modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signalling' paradigm requires that we now characterize physiological signalling not just by receptors but by ligand-receptor pairs.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) represent the largest family of approved therapeutic targets. Ligands stimulating these receptors specifically activate multiple signalling pathways that induce not only the desired therapeutic response, but sometimes untolerated side effects that limit their clinical use. The diversity in signalling induced by each ligand could be considered a viable path for improving this situation.
View Article and Find Full Text PDFIn this review, we discuss the theoretical and experimental foundations for assessing agonism in the context of signalling bias in GPCRs. We show that the formulation of efficacy in classical receptor theory and the definition of ligand-induced allosteric effect in chemical thermodynamics are coincident measures of agonism, only if we recognize that the classical model cannot be considered as a mechanistic description of the physicochemical events underlying ligand-receptor signalling. It represents instead a mathematical tool, fortuitously capable of extracting efficacy information from concentration-dependent functional data, where both ligand-dependent and ligand-independent information are present.
View Article and Find Full Text PDFVasopressin receptor 2 (V2R) mutations causing the nephrogenic syndrome of inappropriate antidiuresis (NSIAD) can generate two constitutively active receptor phenotypes. One type results from residue substitutions in several V2R domains and is sensitive to vaptan inverse agonists. The other is only caused by Arg 137 replacements and is vaptan resistant.
View Article and Find Full Text PDF