Publications by authors named "H Oberleithner"

Inner surfaces of blood vessels and outer surfaces of erythrocytes are coated with a negatively charged protective film of proteoglycans, which serves as an effective buffer system for the positively charged sodium ions. If this protective coating is poorly developed or impaired, it loses its buffering capacity. As a consequence, the organism becomes increasingly sensitive to sodium, which in the long run leads to organ damage, especially if daily salt consumption is high.

View Article and Find Full Text PDF

Here we report a novel role for TRPC6, a member of the transient receptor potential (TRPC) channel family, in the CXCL1-dependent recruitment of murine neutrophil granulocytes. Representing a central element of the innate immune system, neutrophils are recruited from the blood stream to a site of inflammation. The recruitment process follows a well-defined sequence of events including adhesion to the blood vessel walls, migration, and chemotaxis to reach the inflammatory focus.

View Article and Find Full Text PDF

The vascular endothelium is exposed to three types of mechanical forces: blood flow-mediated shear stress, vessel diameter-dependent wall tension and hydrostatic pressure. Despite considerable variations of blood pressure during normal and pathological physiology, little is known about the acute molecular and cellular effects of hydrostatic pressure on endothelial cells. Here, we used a combination of quantitative fluorescence microscopy, atomic force microscopy and molecular perturbations to characterize the specific response of endothelial cells to application of pressure.

View Article and Find Full Text PDF

Early metastasis leads to poor prognosis of lung cancer patients, whose 5-year survival rate is only 15%. We could recently show that the Ca sensitive K channel K3.1 promotes aggressive behavior of non-small cell lung cancer (NSCLC) cells and that it can serve as a prognostic marker in NSCLC.

View Article and Find Full Text PDF

We present a procedure that allows a reliable determination of the elastic (Young's) modulus of soft samples, including living cells, by atomic force microscopy (AFM). The standardized nanomechanical AFM procedure (SNAP) ensures the precise adjustment of the AFM optical lever system, a prerequisite for all kinds of force spectroscopy methods, to obtain reliable values independent of the instrument, laboratory and operator. Measurements of soft hydrogel samples with a well-defined elastic modulus using different AFMs revealed that the uncertainties in the determination of the deflection sensitivity and subsequently cantilever's spring constant were the main sources of error.

View Article and Find Full Text PDF