Diversity-oriented synthesis (DOS) is a powerful strategy to prepare molecules with underrepresented features in commercial screening collections, resulting in the elucidation of novel biological mechanisms. In parallel to the development of DOS, DNA-encoded libraries (DELs) have emerged as an effective, efficient screening strategy to identify protein binders. Despite recent advancements in this field, most DEL syntheses are limited by the presence of sensitive DNA-based constructs.
View Article and Find Full Text PDFWe describe here design, synthesis, and biological evaluation of a series of highly potent HIV-1 protease inhibitors containing stereochemically defined and unprecedented tricyclic furanofuran derivatives as P2 ligands in combination with a variety of sulfonamide derivatives as P2' ligands. These inhibitors were designed to enhance the ligand-backbone binding and van der Waals interactions in the protease active site. A number of inhibitors containing the new P2 ligand, an aminobenzothiazole as the P2' ligand and a difluorophenylmethyl as the P1 ligand, displayed very potent enzyme inhibitory potency and also showed excellent antiviral activity against a panel of highly multidrug-resistant HIV-1 variants.
View Article and Find Full Text PDFBackground/objective: Neurological syndromes are underrepresented in existing triage systems which are not validated for neurological patients; therefore, we developed and validated the new Heidelberg Neurological Triage System (HEINTS) in a prospective, single-center observational study.
Methods: Patients were triaged according to the new triage system by nurses and physicians (stage 1) as well as trained nurses (stage 2). In stage 1, all patients presenting to the neurological emergency room (ER) were triaged by nurses and physicians.
Proc Natl Acad Sci U S A
April 2019
The union of two powerful transformations, directed C-H activation and decarboxylative cross-coupling, for the enantioselective synthesis of vicinally functionalized alkyl, carbocyclic, and heterocyclic compounds is described. Starting from simple carboxylic acid building blocks, this modular sequence exploits the residual directing group to access more than 50 scaffolds that would be otherwise extremely difficult to prepare. The tactical use of these two transformations accomplishes a formal vicinal difunctionalization of carbon centers in a way that is modular and thus, amenable to rapid diversity incorporation.
View Article and Find Full Text PDF