J Med Imaging (Bellingham)
July 2024
Purpose: The trend towards lower radiation doses and advances in computed tomography (CT) reconstruction may impair the operation of pretrained segmentation models, giving rise to the problem of estimating the dose robustness of existing segmentation models. Previous studies addressing the issue suffer either from a lack of registered low- and full-dose CT images or from simplified simulations.
Approach: We employed raw data from full-dose acquisitions to simulate low-dose CT scans, avoiding the need to rescan a patient.
J Geophys Res Space Phys
January 2022
We develop an open source algorithm to apply ransfer learning to urora image classification and agnetic disturbance valuation (TAME). For this purpose, we evaluate the performance of 80 pretrained neural networks using the Oslo Auroral THEMIS (OATH) data set of all-sky images, both in terms of runtime and their features' predictive capability. From the features extracted by the best network, we retrain the last neural network layer using the Support Vector Machine (SVM) algorithm to distinguish between the labels "arc," "diffuse," "discrete," "cloud," "moon" and "clear sky/ no aurora".
View Article and Find Full Text PDFImplanting stents to re-open stenotic lesions during percutaneous coronary interventions is considered a standard treatment for acute or chronic coronary syndrome. Intravascular ultrasound (IVUS) can be used to guide and assess the technical success of these interventions. Automatically segmenting stent struts in IVUS sequences improves workflow efficiency but is non-trivial due to a challenging image appearance entailing manifold ambiguities with other structures.
View Article and Find Full Text PDFObjective: The aim is to evaluate whether smart worklist prioritization by artificial intelligence (AI) can optimize the radiology workflow and reduce report turnaround times (RTATs) for critical findings in chest radiographs (CXRs). Furthermore, we investigate a method to counteract the effect of false negative predictions by AI-resulting in an extremely and dangerously long RTAT, as CXRs are sorted to the end of the worklist.
Methods: We developed a simulation framework that models the current workflow at a university hospital by incorporating hospital-specific CXR generation rates and reporting rates and pathology distribution.
Metal objects in the human heart such as implanted pacemakers frequently lead to heavy artifacts in reconstructed CT image volumes. Due to cardiac motion, common metal artifact reduction methods which assume a static object during CT acquisition are not applicable. We propose a fully automatic Dynamic Pacemaker Artifact Reduction (DyPAR+) pipeline which is built of three convolutional neural network (CNN) ensembles.
View Article and Find Full Text PDF