Mixing at the microscale is of great importance for various applications ranging from biological and chemical synthesis to drug delivery. Among the numerous types of micromixers that have been developed, planar passive spiral micromixers have gained considerable interest due to their ease of fabrication and integration into complex miniaturized systems. However, less attention has been paid to non-planar spiral micromixers with various cross-sections and the effects of these cross-sections on the total performance of the micromixer.
View Article and Find Full Text PDFOne approach to achieve a homogeneous mixture in microfluidic systems in the quickest time and shortest possible length is to employ electroosmotic flow characteristics with heterogeneous surface properties. Mixing using electroosmotic flow inside microchannels with homogeneous walls is done primarily under the influence of molecular diffusion, which is not strong enough to mix the fluids thoroughly. However, surface chemistry technology can help create desired patterns on microchannel walls to generate significant rotational currents and improve mixing efficiency remarkably.
View Article and Find Full Text PDFDespite significant advances in left ventricular assist devices and the cannula, unfavorable events leading to the death of patients, including bleeding, infection, neurological disorders, hemolysis, and thrombosis, are still being reported. Local parameters of blood flow, including static flow, vorticity and critical values of shear stress on the wall of ventricle and cannula, increase the risk of thrombosis. Therefore, the analysis of blood flow domains inside the ventricle and cannula is necessary to investigate the probability of forming thrombosis in the cannula of left ventricular assist devices.
View Article and Find Full Text PDFMagnetic drug delivery known as smart technique in medicine is basically according to combining the drug inside capsules with the magnetic property or attaching the drug with magnetic surfaces at the micro- and nanoscale. In the present study, magnetic drug delivery in the aortic artery has been investigated. To approach the more realistic problem conditions of blood flow rheology, the effect of parameters such as non-Newtonian viscosity and oscillating input has been put into consideration.
View Article and Find Full Text PDFBiomech Model Mechanobiol
December 2020
Magnetic drug delivery as a potential method to treat diseases such as cancer tumors has attracted the attention of many researchers. One of the problems in conventional and ineffective therapies is the spread of drug in the circulatory system. The method of magnetic drug delivery aims at directing the drug to the localized area of disease by using a magnetic field.
View Article and Find Full Text PDF