During NASA's Apollo missions, inhalation of dust particles from lunar regolith was identified as a potential occupational hazard for astronauts. These fine particles adhered tightly to spacesuits and were unavoidably brought into the living areas of the spacecraft. Apollo astronauts reported that exposure to the dust caused intense respiratory and ocular irritation.
View Article and Find Full Text PDFWe report on the detection of discrete grains of crystalline graphite and graphite whiskers (GWs) in an Apollo 17 impact melt breccia. Multiple instances of graphite and GWs within a discrete area of the sample imply that these grains are not terrestrial contamination. Both graphite and GWs are indicative of high-temperature conditions and are probably the result of the impact processes responsible for breccia formation.
View Article and Find Full Text PDFFor the past 40 years, the Moon has been described as nearly devoid of indigenous water; however, evidence for water both on the lunar surface and within the lunar interior have recently emerged, calling into question this long-standing lunar dogma. In the present study, hydroxyl (as well as fluoride and chloride) was analyzed by secondary ion mass spectrometry in apatite [Ca(5)(PO(4))(3)(F,Cl,OH)] from three different lunar samples in order to obtain quantitative constraints on the abundance of water in the lunar interior. This work confirms that hundreds to thousands of ppm water (of the structural form hydroxyl) is present in apatite from the Moon.
View Article and Find Full Text PDFIt has long been recognized that the 29Si and 27Al NMR chemical shifts for aluminosilicate crystals and glasses correlate to some extent with the T-O-T bond angle (where T is the tetrahedral atom Si or Al). With increasing T-O-T bond angle, the 29Si and 27Al NMR shieldings increase and the shifts thus become more negative. This result has been demonstrated both experimentally and through quantum computations.
View Article and Find Full Text PDF