Investigating tumor heterogeneity using single-cell sequencing technologies is imperative to understand how tumors evolve since each cell subpopulation harbors a unique set of genomic features that yields a unique phenotype, which is bound to have clinical relevance. Clustering of cells based on copy number data obtained from single-cell DNA sequencing provides an opportunity to identify different tumor cell subpopulations. Accordingly, computational methods have emerged for single-cell copy number profiling and clustering; however, these two tasks have been handled sequentially by applying various ad-hoc pre- and post-processing steps; hence, a procedure vulnerable to introducing clustering artifacts.
View Article and Find Full Text PDFAround 75% of breast cancer (BC) patients have tumors expressing the predictive biomarker estrogen receptor α (ER) and are offered endocrine therapy. One-third eventually develop endocrine resistance, a majority with retained ER expression. Mutations in the phosphatidylinositol bisphosphate 3-kinase (PI3K) catalytic subunit encoded by PIK3CA is a proposed resistance mechanism and a pharmacological target in the clinical setting.
View Article and Find Full Text PDFMotivation: Copy number variations (CNVs) are common genetic alterations in tumour cells. The delineation of CNVs holds promise for enhancing our comprehension of cancer progression. Moreover, accurate inference of CNVs from single-cell sequencing data is essential for unravelling intratumoral heterogeneity.
View Article and Find Full Text PDF