Transporters of the RND superfamily are well-known as the major drug efflux pumps of Gram-negative bacteria. However, they are widespread in organisms ranging from Archaea to Eukaryotes, and perform diverse functions. This review gives a brief overview of these diverse members of the superfamily with emphasis on their structure and functions.
View Article and Find Full Text PDFAn experimental approach to detect the path a substrate takes through a complex membrane protein is described with emphasis on technical approach and theoretical considerations. The protocols for bacterial culture preparation, membrane protein purification, fluorescent assay standardization, data collection, and data analysis are provided. Useful software tools are recommended.
View Article and Find Full Text PDFTransporters undergo large conformational changes in their functional cycle. RND (Resistance-Nodulation-Division) family efflux transporters usually exist as homotrimers, and each protomer was proposed to undergo a cycle of conformational changes in succession so that at any given time the trimer would contain three protomers of different conformations, the functionally rotating mechanism of transport. This mechanism implies that the inactivation of one protomer among three will inactivate the entire trimeric ensemble by blocking the functional rotation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2016
Background: The Resistance-Nodulation-Division (RND) family transporter AcrB plays a major role in the intrinsic and increased resistance of Escherichia coli to a large number of antibiotics. The distal binding pocket within this multidrug efflux transporter is very large, but the effort to define the roles of various residues facing this pocket through site-directed mutagenesis so far involved only the determination of minimal inhibitory concentrations of drugs in mutants.
Methods: We measured in intact E.