Publications by authors named "H N Shivakumar"

Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease.

View Article and Find Full Text PDF

Zaltoprofen (ZAL) is a non-steroidal anti-inflammatory drug (NSAID) with a short half-life (∼2.8 h) due to extensive first pass metabolism. In this context, 16 different polymeric film forming solutions (PFFS) of ZAL were developed using different grades of Eudragits, Polyvinylpyrrolidones, Kollicoat MAE 100 P and Hydroxypropyl cellulose as film formers, and polyethylene glycol 400 as a plasticizer in equal parts of ethanol and isopropyl alcohol used as solvents.

View Article and Find Full Text PDF

Alzheimer's disease (AD), which is marked by gradual neuronal decline and subsequent loss of cognitive functions and memory, poses significant treatment challenges. The present study involved the development, , and evaluation of a novel intranasal mucoadhesive in-situ gel of vinpocetine (VIN) with the aim to target the brain. An innovative gel formulation composed of poloxamer 407, HPMC E15 LV, and citric acid as a solubilizer was developed by 2 Factorial Design.

View Article and Find Full Text PDF

The research aimed to develop novel bioadhesive sodium alginate (Na-Alg) microspheres laden pessaries for intravaginal delivery of tenofovir disoproxil fumarate (TDF), to overcome limitations of conventional dosage forms. Twelve batches of microspheres formulated by emulsification gelation method indicated that drug-polymer ratios and polymer type affected particle size, drug release, and entrapment efficiency (%EE). Microspheres of batch EH-8 with drug: polymer ratio of 1:4 containing equal amounts of Na-Alg and HPMC K100M displayed optimal %EE (62.

View Article and Find Full Text PDF

Vinpocetine (VIN), a derivative of vincamine found in the vinca plant, widens blood vessels in the brain and has been shown to improve cognitive function, memory, and cerebrovascular disorders. Nevertheless, the clinical utility of VIN is constrained by factors such as low oral bioavailability owing to the first-pass metabolism that often demands frequent dosing of 3-4 tablets/day. In this regard, the present work aimed to develop VIN-loaded chitosan nanoparticles (VIN-CH-NPs) to surmount these limitations and in view to enhance delivery to the brain of VIN by minimizing systemic exposure.

View Article and Find Full Text PDF